I have one reason the reaction take place faster because the molecules are going at a faster pace because the temperature is rising
Answer:
10.99 m
Explanation:
m = mass of the block = 0.245 kg
k = spring constant of the vertical spring = 4975 N/m
x = compression of the spring = 0.103 m
h = height to which the block rise
Using conservation of energy
Potential energy gained by the block = Spring potential energy
mgh = (0.5) k x²
(0.245) (9.8) h = (0.5) (4975) (0.103)²
h = 10.99 m
Answer
given,
Time period= T = 1.5 s
If it's moving through equilibrium point at t₀= 0 with v = 1.0 m/s
v_max=1.00 m/s
we know,
v_ max=A ω
v = A sin (ωt)
-0.50= -1.00 sin (ωt)
sin (ωt) = 0.5
t = 0.125 s
we have time period T=1.5 it is the time to complete one oscillation
means from eq to right,then left,then eq,then left,then from right to eq
time taken for left = t/4 = 0.125/4 = 0.375 s
smallest value of time
=0.375 + 0.125
= 0.50 sec
Answer:
6.003×10¯⁶ N
Explanation:
We'll begin by converting 1 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
1 cm = 1 cm × 1 m / 100 cm
1 cm = 0.01 m
Finally, we shall determine the gravitational attraction. This can be obtained as follow:
Mass 1 (M₁) = 3 Kg
Mass 2 (M₂) = 3 Kg
Distance apart (r) = 0.01 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Force of attraction (F) =?
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 3 × / 0.01²
F = 6.003×10¯¹⁰ / 1×10¯⁴
F = 6.003×10¯⁶ N
Thus the gravitational attraction is 6.003×10¯⁶ N
The guy that answered this is fake and he’s doing it for free points so
Just repost it and hope he doesn’t find it