As we know that time period of simple pendulum is given as
T = 2π √L/g
here we know that
T = 3.8 s
now from above equation we know that
T² = 4π² (L/g)
now on rearranging the above equation we will have
L = gT² / 4π²
now plug in all data into it
L = (9.8) (3.8)² / (4) (3.14)²
so the length of the cable must be 3.6 m
Answer:
The acceleration due to gravity is times the value of g at the Earth’s surface.
(D) is correct option.
Explanation:
Given that,
Radius = 4000 miles
We need to calculate the gravitational force at surface
Gravitational force on the mass m on the surface of the earth
At r = R
....(I)
We need to calculate the gravitational force at height
Gravitational force on a mass m from the center of the earth,
At r = R + R = 2 R
....(II)
Dividing equation (II) by equation (I)
Hence, The acceleration due to gravity is times the value of g at the Earth’s surface.
Answer:
213 s
Explanation:
Slope is the ratio of change in vertical distance to change in horizontal distance.
Slope = vertical height / horizontal height
Therefore:
6.4% = vertical height / 12.42
vertical height = 6.4% * 12.42
vertical height = 0.8 miles
The distance travelled by the car (s) is:
s² = 0.8² + 12.42²
s² = 154.9
s = 12.45 miles
Acceleration (a) = 2.93 ft/s^2 = 0.00055 mile/s²
initial velocity (u) = 0, final velocity = 203 mph
Using:
s = ut + 0.5at²
12.45 = 0.5(0.00055)t²
t =213 s
<em>A clamp-type measuring instrument operates on the principle of; </em>
A. induction
It supports 128 primary partitions.