Answer:
<h2>135,000 J</h2>
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 900 × 150
We have the final answer as
<h3>135,000 J</h3>
Hope this helps you
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:
where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s
Solving for F,
And since we are interested in the magnitude only,
F = 106.7 N
To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by
Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,
Where,
For our case we have that there is neither initial position nor initial velocity, then
With our values we have , rearranging to find a,
Therefore the final velocity would be
Therefore the final velocity is 81.14m/s
In a closed primary, only voters registered with a given party can vote in that party's primary.
Here stress is parallel to the surface of the body. So it's a Shear stress.