Coulomb's Law
Given:
F = 3.0 x 10^-3 Newton
d = 6.0 x 10^2 meters
Q1 = 3.3x 10^-8 Coulombs
k = 9.0 x 10^9 Newton*m^2/Coulombs^2
Required:
Q2 =?
Formula:
F = k • Q1 • Q2 / d²
Solution:
So, to solve for Q2
Q2 = F • d²/ k • Q1
Q2 = (3.0 x 10^-3 Newton) • (6.0 x 10^2 m)² / (9.0 x 10^9
Newton*m²/Coulombs²) • (3.3x 10^-8 Coulombs)
Q2 = (3.0 x 10^-3 Newton) • (360 000 m²) / (297 Newton*m²/Coulombs)
Q2 = 1080 Newton*m²/ (297 Newton*m²/Coulombs)
Then, take the reciprocal of the denominator and start
multiplying
Q2 = 1080 • 1 Coulombs/297
Q2 = 1080 Coulombs / 297
Q2 = 3.63636363636 Coulombs
Q2 = 3.64 Coulumbs
6,5 6,4 6,3 6,2 6
if you know,1
<span>Viscosity, the more a fluid resists flow, the more viscous the flow. For example, honey is a very viscous fluid, while water is not as viscous. Hope this helps(:</span>
Answer:
a) a geostationary satellite is that it is always at the same point with respect to the planet,
b) f = 2.7777 10⁻⁵ Hz
c) d) w = 1.745 10⁻⁴ rad / s
Explanation:
a) The definition of a geostationary satellite is that it is always at the same point with respect to the planet, that is, its period of revolutions is the same as the period of the planet
- T = 10 h (3600 s / 1h) = 3.6 104 s
b) the period the frequency are related
T = 1 / f
f = 1 / T
f = 1 / 3.6 104
f = 2.7777 10⁻⁵ Hz
c) the distance traveled by the satellite in 1 day
The distance traveled is equal to the length of the circumference
d = 2pi (R + r)
d = 2pi (69 911 103 + 120 106)
d = 1193.24 m
d) the angular velocity is the angle traveled between the time used.
.w = 2pi /t
w = 2pi / 3.6 10⁴
w = 1.745 10⁻⁴ rad / s
how fast is
v = w r
v = 1.75 10-4 (69.911 106 + 120 106)
v = 190017 m / s
Plant cells are eukaryotic cells that differ in several key aspects from the cells of other eukaryotic organisms. number two sry but Idk
:(