Answer:
The volume will also decrease.
Explanation:
This illustration clearly indicates Boyle's law.
Boyle's law states that the volume of a fixed mass of gas is directly proportional to the absolute temperature, provided the pressure remains constant. Mathematically, it is represented as:
V & T
V = KT
K = V/T
V1/T1 = V2/T2 =... = Vn/Tn
Where:
T1 and T2 are the initial and final temperature respectively, measured in Kelvin.
V1 and V2 are the initial and final volume of the gas respectively.
From the illustration above, the volume is directly proportional to the temperature. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume also will decrease.
Answer:
Explanation:
we know that
ΔH=m C ΔT
where ΔH is the change in enthalpy (j)
m is the mass of the given substance which is water in this case
ΔT IS the change in temperature and c is the specific heat constant
we know that given mass=2.9 g
ΔT=T2-T1 =98.9 °C-23.9°C=75°C
specific heat constant for water is 4.18 j/g°C
therefore ΔH=2.9 g*4.18 j/g°C*75°C
ΔH=909.15 j
Well your mass wont change...so it would be 35 grams of a liquid
Answer:
28.497 cm3
Explanation:
Formula
D=m/v
Given data:
density = 19.3g/cm3
mass = 550 g
Now we will put the values in formula:
V=m/d
V=550 g/ 19.3 g/cm3 = 28.497 cm3
So the volume of gold is 28.497 cm3.