Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)
Yes, Ionic bonds do not share electrons. Polar covalent bonds share electrons they just share them unevenly due to the polarity.
Answer:
35.9 ml
Explanation:
Start with the balanced equation:
3CuCl2(aq)+2Na3PO4(aq)→Cu3(PO4)2(s)+6NaCl(aq)
This tells us that 3 moles of CuCI2 react with 2 moles Na3PO4-
∴ 1 mole CuCl2 will react with 2/3 moles Na3PO4
We know that concentration = moles/volume i.e:
c= n/v
∴n=c×v
∴nCuCl2=0.107×91.01000=9.737×10−3
I divided by 1000 to convert ml to L
∴nNa3PO4=9.737×10−3×23=6.491×10−3
v=nc=6.491×10−30.181=35.86×10−3L
∴v=35.86ml
Answer:
6.68 X 10^-11
Explanation:
From the second Ka, you can calculate pKa = -log (Ka2) = 6.187
The pH at the second equivalence point (8.181) will be the average of pKa2 and pKa3. So,
8.181 = (6.187 + pKa3) / 2
Solving gives pKa3 = 10.175, and Ka3 = 10^-pKa3 = 6.68 X 10^-11
D = m / V
13.6 = 8.3 / V
V = 8.3 / 13.6
V = 0.610 mL
hope this helps!