Answer:
f(g(x)) = 2(x^2 + 2x)^2
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Step-by-step explanation:
Given;
f(x) = 2x^2
g(x) = x^2 + 2x
To derive the expression for f(g(x)), we will substitute x in f(x) with g(x).
f(g(x)) = 2(g(x))^2
f(g(x)) = 2(x^2 + 2x)^2
Expanding the equation;
f(g(x)) = 2(x^2 + 2x)(x^2 + 2x)
f(g(x)) = 2(x^4 + 2x^3 + 2x^3 + 4x^2)
f(g(x)) = 2(x^4 + 4x^3 + 4x^2)
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Hope this helps...
Answer:
A. 3a-2=54
Step-by-step explanation:
3 x her age - the 2 year will equal 54
Point slope form follows the equation y-y₁=m(x-x₁), so we want it to look like that. Starting off with m, or the slope, we can find this using your two points with the formula
. Note that y₁ and x₁ are from the same point, but it does not matter which point you designate to be point 1 and point 2. Thus, we can plug our numbers in - the x value comes first in the equation, and the y value comes second, so we have
as our slope. Keeping in mind that it does not matter which point is point 1 and which point is point 2, we go back to y-y₁=m(x-x₁) and plug a point in (I'll be using (10,5)). Note that x₁, m, and y₁ need to be plugged in, but x and y stay that way so that you can plug x or y values into the formula to find where exactly it is on the line. Thus, we have our point slope equation to be
Feel free to ask further questions!
In this question, we're trying to find how many miles a car travels in 15 minutes.
We know that the car travels at 85 mph.
However, we need to know how many miles it travels per minute.
To find this, we would divide 85 by 60.
85 ÷ 60 = 1.4166
The car drives at a speed of about 1.42 per minute.
We need to know how far it goes in 15 minutes, so multiply 1.42 by 15.
1.42 · 15 = 21.3
The car travels at a approximately 21.3 miles in 15 minutes.