A is obviously out because it leads to a volume of 125.0 milliliters of the new solution and gives you a lower concentration than you were aiming for.
D is out because you are adding 75 milliliters of the stock solution, so your concentration would be too high. You only need 25.0 milometers of stock solution per 100 milliliters of the new solution.
C is also out because it leads to 50.0 milliliters stock solution per 100 milliliters of the new solution and hence the wrong concentration.
B is by default the correct answer. It also details the correct technique. First you add the stock solution (This you know from your calculations to be 25 milliliters.) then you add the water up to the volume you needed. (Because the calculations only tell you the total volume of water not what you need to add) You also add the water last so you can rinse the neck of the flask to make sure you also get all the stock solution residue into the stock solution.
I would add the final step of stirring, but B is the only answer that can be correct.
Answer:
9
Explanation:
mass number = protons + neutrons
= 4 + 5 = 9
It's a physical property because it doesn't change the element of the metal.
does this make sense?
It obtains a neutral pH (7). The combination of a strong acid and a strong base results in a neutral pH. The pH of HCl is about 1, and the pH of NaOH is 14.
Answer:
The correct answer is 1.21 L.
Explanation:
Based on the given information, the reaction will be,
CS2 (l) + 3Cl2 (g) ⇒ CCl4 (l) + S2Cl2 (l)
By using the standard values of the substances, the standard enthalpy of the reaction is,
ΔH° = [(-139.5) + (-58.5) – 0 – (87.3)] kJ/mol
= -285.3 kJ/mol
The amount of heat evolved for 3 moles of chlorine reacted us 285.3 kJ.
Now the number of moles of chlorine needed to react to produce 5.00 kJ is,
= 5.00 kJ × 3 mol Cl2/285.3 kJ
= 0.0526 mol Cl2
Now the volume of chlorine gas at 27degree C and 812 mmHg will be,
Volume = 0.0526 mol Cl2 × 0.0821 Latm/mol K × 300 K/ 1.07 atm
= 1.21 L