The Molar concentration of your analyte solution is 1.17 m
<h3>What is titration reaction?</h3>
- Titration is a chemical analysis procedure that determines the amount of a sample's ingredient by adding a precisely known amount of another substance to the measured sample, with which the desired constituent reacts in a specific, known proportion.
Make use of the titration formula.
The formula is molarity (M) of the acid x volume (V) of the acid = molarity (M) of the base x volume (V) of the base.
if the titrant and analyte have a 1:1 mole ratio. (Molarity is a measure of a solution's concentration represented as the number of moles of solute per litre of solution.)
26 x 1.8 = 40 x M
M = 26 x1.8 /40
M = 1.17
The Molar concentration of your analyte solution is 1.17 m
To learn more about Titration refer,
brainly.com/question/186765
#SPJ4
Answer:
A synthesis reaction is <em>a reaction that occurs when two or more reactants combine into one product.</em>
Explanation:
A reaction that occurs when two or more reactants combine into one product is called a synthesis reaction.
A reaction that occurs when one element within a compound is exchanged with another element is called a single replacement reaction.
A reaction that occurs when a substance combines with molecular oxygen, releasing light and energy is called combustion.
A reaction that occurs when a single substance breaks apart and forms two or more new substances is called decomposition.
Answer:
if you tell me how much is needed and how much you have then i can answer it, but there is not enough information provided to answer to that question.
Explanation:
The first statement (Matter is neither created nor destroyed) is correct.
The second statement would violate the law of conservation of mass (I will refer to this as LCM), as it would mean matter can "flow" into the universe, but not out, meaning the total matter will never be less than it was before.
The third statement violates LCM because it means matter is created during a reaction, which is not true.
The last statement violates LCM because it means matter is lost during a reaction, which is not true.