Answer:
Potential Energy
Explanation:
Potential energy is the energy stored in an object due to it's position relative to some zero position. An object possesses gravitational potential energy if it is positioned at a height above (or below) the zero height.
The frequency, f, of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz (Hz), since one hertz is equal to one wave per second.
Diagram B .... light shines through at an angle
a. The disk starts at rest, so its angular displacement at time is
It rotates 44.5 rad in this time, so we have
b. Since acceleration is constant, the average angular velocity is
where is the angular velocity achieved after 6.00 s. The velocity of the disk at time is
so we have
making the average velocity
Another way to find the average velocity is to compute it directly via
c. We already found this using the first method in part (b),
d. We already know
so this is just a matter of plugging in . We get
Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that
Then for we would get the same .
Answer:
The wavelength of these signals is as follow:
- Wavelength of 550 kHz is 545.45 m
- Wavelength of 1600 kHz is 187.5 m
Explanation:
Given that:
Frequency = 550 kHz & 1600 kHz
Velocity = 3.0 x 10⁸ m/s
As we know that frequency is expressed by the following equation:
- Frequency = Velocity / Wavelength ---- (1)
For 550 kHz:
The equation can be rearranged as
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (550 x 1000 Hz)
Wavelength = 545.45 m
For 1600 kHz:
Wavelength = Velocity / Frequency
Wavelength = (3.0 x 10⁸ m/s) / (1600 x 1000 Hz)
Wavelength = 187.5 m