Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
- Mass of the sample: 200. g
Step 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
Answer:
sodium chloride
Explanation:
Because of the strong ionic bonds it possesses
Answer:
Atoms making liquids have less attraction than solids, but more than gases
Explanation:
The attraction between atoms in different molecules in a solid is very strong due to strong intermolecular forces present in a solid. However, such intermolecular forces are weaker in liquids than in solids.
This implies that the solid has higher intermolecular forces of attraction compared to gases and liquids. Based on the negligible degree of intermolecular forces between them, a gas has the weakest intermolecular forces hence the atom has very minimal interaction between them.
Answer:
V=0.3×22.4=6.72 liters hope this helps