Equation of reaction
Hcl+NaoH-->Nacl+H2O
1:1
Using the formula CaVa/CbVb=na/nb
Ca(Concentation of acid)= 0.100M
Cb(Concentration of base)=0.200M
Va=?
VB=50.00ml
na=1
nb=1
from the formula
Va= CbVbna/Canb
Va= 0.2*50*1/0.1*1
=10/0.1=100ml
Therefore volume of acid = 100ml
Answer:
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary to write out the described chemical reaction as shown below:
Now, we set up the expression for the calculation of the standard free energy change, considering the free energy of formation of each species, specially those of H2 and F2 which are both 0 because they are pure elements:
Regards!
Answer:
Explanation:
We are asked to find how many moles of sodium carbonate are in 57.3 grams of the substance.
Carbonate is CO₃ and has an oxidation number of -2. Sodium is Na and has an oxidation number of +1. There must be 2 moles of sodium so the charge of the sodium balances the charge of the carbonate. The formula is Na₂CO₃.
We will convert grams to moles using the molar mass or the mass of 1 mole of a substance. They are found on the Periodic Table as the atomic masses, but the units are grams per mole instead of atomic mass units. Look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- C: 12.011 g/mol
- O: 15.999 g/mol
Remember the formula contains subscripts. There are multiple moles of some elements in 1 mole of the compound. We multiply the element's molar mass by the subscript after it, then add everything together.
- Na₂ = 22.9897693 * 2= 45.9795386 g/mol
- O₃ = 15.999 * 3= 47.997 g/mol
- Na₂CO₃= 45.9795386 + 12.011 + 47.997 =105.9875386 g/mol
We will convert using dimensional analysis. Set up a ratio using the molar mass.
We are converting 57.3 grams to moles, so we multiply by this value.
Flip the ratio so the units of grams of sodium carbonate cancel.
The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place to the right tells us to round the 0 up to a 1.
There are approximately <u>0.541 moles of sodium carbonate</u> in 57.3 grams.
Answer: -
The experiment Niven is doing is burning of Mg.
The first step would be finding the molar mass of MgO
Atomic mass of Mg = 24 g
Atomic mass of Oxygen = 16 g
Molar mass of MgO = 24 x 1 + 16 x 1 = 40 g
The balanced chemical equation for this reaction is
2 Mg + O2 -- > 2MgO
From the balanced equation we see that
2 Mg gives 2 MgO
2 x24 g of Mg O gives 2 x 40 g of MgO.
28g of MgO gives
= 46.66 g of MgO.
Answer:
D = 5.3 g/mL
Explanation:
Density = Mass over Volume
D = m/V
Step 1: Define
D = unknown
m = 16 g
v = 3.0 mL
Step 2: Substitute and Evaluate
D = 16 g / 3.0 mL
D = 5.333333333 g/mL
Step 3: Simplify
We have 2 sig figs.
5.333333333 g/mL ≈ 5.3 g/mL