Answer:
C1V1=C2V2
C1 is 2.0mol/l
V1=?
C2=.4mol/L
V2=100ml or for this 0.1L
V1 is 20ml
Best way to prepare this is to measure out 20ml of the 2 molar solution and add 80mL to it to get to 100mL
Explanation:
Yes because she is holding the weight of the box.
Answer:
Individual solute particles are broken apart from the solid by the;
c. Solvent
Explanation:
A solution is the homogeneous mixture that is made up of two or more substances formed by dissolving a substance which can be a solid, liquid or gas in another substance known as the solvent which normally the larger part of the fraction of the solution than the solute and can also be a solid, liquid or a gas
In a solution the solvent particles serves to brake of and disperser parts of a solid solute to form a more or less homogeneous mixture
Therefore, the solute particles are broken by the <u>solvent</u> particles in a solution
The question is incomplete.
You need two additional data:
1) the original volume
2) what solution you added to change the volume.
This is a molarity problem, so remember molarity definition and formula:
M = n / V in liters: number of moles per liter of solution
To give you the key to answer this kind of questions, supppose the original volumen was 1 ml and that you added only water (solvent).
The original solution was:
V= 1 ml
M = 0.2 M
Using the formula for molarity, M = n / V
n = M×V = 0.2 M × (1 / 10000)l = 0.0002 moles
For the final solution:
n = 0.0002 moles
M = 0.04
From M = n / V ⇒ V = n / M = 0.002 moles / 0.04 M = 0.05 l
Change to ml ⇒ 0.05 l × 1000 ml / l = 50 ml. This would be the answer for the hypothetical problem that I assumed for you.
I hope this gives you all the cues you need to answer similar problems about molarity.