<span>2π/T = 2π/10 = π/5
y(x) = A sin (wx) = 0.75 sin (πx/5)
y(4) = 0.75 sin (4π/5) = 0.4408389392... ≈ 0.441</span><span>
</span>
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring
Energy lost due to friction
So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy
v = 1.40 m/sec
Answer:
1.195 m
2.8375 s
2.21433 rad/s
Explanation:
d = Distance = 2.39 m
N = Number of cycles = 8
t = Time to complete 8 cycles = 22.7 s
Radius would be equal to the distance divided by 2
The radius is 1.195 m
Time period would be given by
Time period of the motion is 2.8375 s
Angular speed is given by
The angular speed of the motion is 2.21433 rad/s
Answer:
Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by
where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of for 182 seconds. Then it brakes with a constant acceleration of until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is
Our data is
Let's compute the first distance X1
Now, we find the speed at the end of the first period of time
That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0
Computing the second distance
The total distance is
Answer:
23 electrons
Explanation:
i just know because im a god