Answer:
uhh
Explanation:
Have no clue but I hope u get the question answered
Answer : The energy removed must be, -67.7 kJ
Solution :
The process involved in this problem are :
The expression used will be:
where,
= heat released by the reaction = ?
m = mass of benzene = 125 g
= specific heat of gaseous benzene =
= specific heat of liquid benzene =
= enthalpy change for vaporization =
Molar mass of benzene = 78.11 g/mole
Now put all the given values in the above expression, we get:
Therefore, the energy removed must be, -67.7 kJ
Ionic compounds are compounds that are formed together by a cation and an anion. A cation is an ion with a positive charge. For example, Na+ and Ca2+. An ion has a negative charge, like Cl- and OH-. There is a greater chance of forming an ionic compound when they have a great difference in electronegativity, the ability to attract electrons toward itself. In the periodic table, elements that are opposite to each other, more likely found in opposite sides, would be more apt to form an ionic compound. Example would be NaCl and CaCl2 or Ca(OH)2.
Answer:
92.04%
Explanation:
Given:
Mass of CO₂ obtained = 53.0 grams
Mass of calcium carbonate heated = 1.31 grams
Now,
the molar mass of the calcium carbonate = 100.08 grams
The number of moles heated in the problem = Mass / Molar mass
= (1.31 grams) / (100.08 grams/moles)
= 0.013088 moles
now,
1 mol of calcium carbonate yields 1 mol of CO₂
thus,
0.013088 moles of calcium carbonate will yield = 0.013088 mol of CO₂
now,
Theoretical mass of 0.013088 moles of CO₂ will be
= Number of moles × Molar mass of CO₂
= 0.013088 × 44 = 0.5758 grams
Thus, the percent yield for this reaction =
or
the percent yield for this reaction =
or
the percent yield for this reaction = 92.04%
Answer: 670K
Explanation:
Given that,
Original volume of gas V1 = 1.22 L
Original temperature T1 = 286 K
New volume V2 = 2.86 L
New temperature T2 = ?
Since volume and temperature are involved while pressure is constant, apply the formula for Charles law
V1/T1 = V2/T2
1.22 L/286 K = 2.86 L/ T2
Cross multiply
1.22 L x T2 = 286 K x 2.86 L
1.22T2 = 817.96
Divide both sides by 1.22
1.22T2/1.22 = 817.96/1.22
T2 = 670.459 K (Round to the nearest whole number as 670 K)
Thus, the temperature of the gas is 670 Kelvin