Answer:
Energy produced by respiration is stored in Adenosine triphosphate, also known as ATP.
Explanation:
Cellular respiration uses glucose and turns it into ATP. Using NADH and FADH₂ (Created in the Krebs Cycle) in the Electron Transport Chain, we can produce 32-38 molecules of ATP. ATP carries a lot of energy, and your cells and body uses ATP (ATP is basically like a large battery).
It's both B.They can never be depleted and C.They are replaceable by natural means.
From mouth/nose, the air passes to the trachea (the wind pipe), there it enters (sequentially) the bronchi, bronchioles (small pipe-like structures), alveoli (widened empty sacs), the walls of which are in close contact with the blood vessels which contain the RBCs, which in turn contain the protein--hemoglobin, which binds to the oxygen present in the freshly inhaled air, and loses the carbondioide present DISSOLVED in the blood. This bound oxygen goes to the heart (of course along with the RBCs in the blood), from there to the smaller and smaller arteries, then to the capillaries, where again oxygen is lost to the surrounding tissue fluid, from where the cells collect oxygen by simple diffusion, and lose carbon dioxide, which gets dissolved in the water present in the blood.
From here the blood, with hemoglobin poorer in oxygen, and richer again in carbondioxide goes to the venules, and veins (capillaries continue as venules), which become successively larger to become superior and inferior vena cava and enter the right atrium, and then from there the blood again goes to the lungs and comes in contact with fresh air in the alveoli.
Answer:
Different types of evidence supported Hess's theory of sea-floor spreading: eruptions of molten material, magnetic stripes in the rock of the ocean floor, and the ages of the rocks themselves. This evidence made scientists take a second look at Wegener's hypothesis of continental drift.
Explanation:
Polysaccharides are present in all living organisms where they carry out one or more of their diverse functions. While there is no specific category or definition of a complex polysaccharide, most are structurally complex. Polysaccharides contain 1–5 different monosaccharide (sugar) units. The different sugar units may have different anomeric configurations and/or be joined by different glycosidic linkages. Polysaccharides may be linear or branched. Branches may be short saccharide units on a linear backbone or the molecule may have a branch-on-branch structure; in either case, the branches may be isolated or clustered. Polysaccharides may contain non‐carbohydrate groups. Esters or cyclic acetal groups, when present, can be removed by appropriate treatments. All polysaccharides are polydisperse, i. e., are present in a range of molecular weights rather than having a single molecular weight
hope this hepls