Answer:
Set builder notation: {a | a ≥ -21}
Interval notation: [-21, ∞)
Step-by-step explanation:
A set represents a collection of things, objects, or numbers. A set builder notation is in the form y = {x | x is an odd number between 8 and 10}, which means y contains all the odd numbers between 8 and 10.
Interval notation is a way to define a set of numbers between a lower limit and an upper limit using end-point values. for example (8, 20) means numbers between 8 and 20.
Given -3a-15≤-2a+6; solving :
-3a - 15 ≤ -2a + 6
-3a + 2a ≤ 6 + 15
-a ≤ 21
dividing through by -1:
a ≥ -21
The solution is:
Set builder notation: {a | a ≥ -21}
Interval notation: [-21, ∞)
Answer:
The answer should be that Q is (-3,-2)
Step-by-step explanation:
Answer:
( a ) Trinomial, the degree of the polynomial = 3
( b ) Polynomial, the degree of the polynomial = 4
( c ) Binomial, the degree of the polynomial = 2
( d ) Monomial, the degree of the polynomial = 1
Step-by-step explanation: