Una parte de 25 000 dólares se invierte al 10% de interés, otra parte al 12 % y el resto al 16%. El ingreso anual total de las t
res inversiones es de 3200 dólares. Además, el ingreso de la inversión al 16% es igual al ingreso de las otras dos inversiones combinadas. ¿Cuánto se invirtió a cada tasa de interés?
<em>One part of $ 25,000 is invested at 10% interest, another part at 12%, and the rest at 16%. The total annual income from the three investments is $ 3,200. Also, the income from the investment at 16% is equal to the income from the other two investments combined. How much was invested at each interest rate?</em>
==================
Let the parts be x, y and z
<u>As per given we get below system of equations:</u>
x + y + z = 25000
0.1x + 0.12y + 0.16z = 3200
0.1x + 0.2y = 0.16z
<u>Substitute 0.1x + 0.2y in the second equation:</u>
The equation for the area of a parallelogram is A=bh. In this case, the base is 4 and the height is two so the equation would be 4*2 which would be eight.