Answer:
Option A = 2.2 L
Explanation:
Given data:
volume of one mole of gas = 22.4 L
Volume of 0.1 mole of gas at same condition = ?
Solution:
It is known that one mole of gas at STP occupy 22.4 L volume. The standard temperature is 273.15 K and standard pressure is 1 atm.
For 0.1 mole of methane.
0.1/1 × 22.4 = 2.24 L
0.1 mole of methane occupy 2.24 L volume.
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Answer:
a) After helping our partner, we should immediately report the incident to the lab manager or any person in charge of the emergencies occurring in the lab.
b) We should have a copy of the Material Safety Data Sheet to give to the responders. This is because the responder can identify what materials were being used by the person ans what other security measures need to be taken.
Answer : The volume of required to neutralize is, 340 mL
Explanation :
To calculate the volume of base (NaOH), we use the equation given by neutralization reaction:
where,
are the n-factor, molarity and volume of acid which is
are the n-factor, molarity and volume of base which is NaOH.
We are given:
Putting values in above equation, we get:
Hence, the volume of required to neutralize is, 340 mL
Answer:
B
Explanation:
Boyle was known for rejecting Aristotle's theory basing it on the four elements (earth, air, fire, water).