The volume is directly proportional to the absolute temperature so the answer is A.
The number of valence electrons of an element can be determined by the periodic table group (vertical column) in which the element is categorized
Answers:
(a) 30.55 °C
(b) 298 K and 77°F
(c) 204.44 °C and 477.44 K
(d) -320.8 °F and -196 °C
Explanation:
Converting °C into °F;
°F = °C × 1.8 + 32
Converting °F into °C;
°C = °F - 32 ÷ 1,8
Converting °C into K;
K = °C + 273
Converting K into °C;
°C = K - 273
Grams of Ca(NO₃)₂ produced : 0.985 g
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
CaCl₂ + 2AgNO₃ → 2AgCl + Ca(NO₃)₂
MW AgNO₃ : 107.9+14+3.16=169.9
mol AgNO₃ :
mol ratio Ca(NO₃)₂ : AgNO₃ = 1 : 2, so mol Ca(NO₃)₂ :
MW Ca(NO₃)₂ : 40.1+2.14+6.16=164.1 g/mol
mass Ca(NO₃)₂ :
We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.