Direction of resultant force in circular motion is directed towards the center of the circle. Hence vector B is the direction of the resultant force.
E = hf
E : photon energy
h : Plank's constant 6.63×10^-34
f : frequency
Hope it helped!
Explanation:
1) N₂ + O₂ → 2 NO
Kc = [NO]² / ([N₂] [O₂])
Set up an ICE table:
Plug into the equilibrium equation and solve for x.
1.00×10⁻⁵ = (2x)² / ((0.114 − x) (0.114 − x))
1.00×10⁻⁵ = (2x)² / (0.114 − x)²
√(1.00×10⁻⁵) = 2x / (0.114 − x)
0.00316 = 2x / (0.114 − x)
0.00361 − 0.00316x = 2x
0.00361 = 2.00316x
x = 0.00018
The volume is 1.00 L, so the concentrations at equilibrium are:
[N₂] = 0.114 − x = 0.11382
[O₂] = 0.114 − x = 0.11382
[NO] = 2x = 0.00036
2(a) Cl₂ → 2 Cl
Kc = [Cl]² / [Cl₂]
1.2×10⁻⁷ = (2x)² / (2 − x)
1.2×10⁻⁷ (2 − x) = 4x²
2.4×10⁻⁷ − 1.2×10⁻⁷ x = 4x²
2.4×10⁻⁷ ≈ 4x²
x² ≈ 6×10⁻⁸
x ≈ 0.000245
2x ≈ 0.00049
2(b) F₂ → 2 F
Kc = [F]² / [F₂]
1.2×10⁻⁴ = (2x)² / (2 − x)
1.2×10⁻⁴ (2 − x) = 4x²
2.4×10⁻⁴ − 1.2×10⁻⁴ x = 4x²
2.4×10⁻⁴ ≈ 4x²
x² ≈ 6×10⁻⁵
x ≈ 0.00775
2x ≈ 0.0155
F₂ dissociates more, so Cl₂ is more stable at 1000 K.
The component of the crate's weight that is parallel to the ramp is the only force that acts in the direction of the crate's displacement. This component has a magnitude of
<em>F</em> = <em>mg</em> sin(20.0°) = (15.0 kg) (9.81 m/s^2) sin(20.0°) ≈ 50.3 N
Then the work done by this force on the crate as it slides down the ramp is
<em>W</em> = <em>F d</em> = (50.3 N) (2.0 m) ≈ 101 J
The work-energy theorem says that the total work done on the crate is equal to the change in its kinetic energy. Since it starts at rest, its initial kinetic energy is 0, so
<em>W</em> = <em>K</em> = 1/2 <em>mv</em> ^2
Solve for <em>v</em> :
<em>v</em> = √(2<em>W</em>/<em>m</em>) = √(2 (101 J) / (2.0 m)) ≈ 10.0 m/s