At first glance, this statement seems to be true. But after about a
microsecond of further consideration, one realizes that the statement
would actually set Boyle spinning in his grave, and is false.
Boyle's law states that there is a firm relationship among the pressure,
temperature, and volume of an ideal gas, and that you can't say anything
about how any two of these quantities depend on each other, unless you
also say what's happening to the third one at the same time.
As the pressure of an ideal gas increases, the volume will decrease in
direct proportion to the volume, IF THE TEMPERATURE OF THE GAS
REMAINS CONSTANT.
If you wanted to, you could increase the pressure AND the volume of an
ideal gas both at the same time. You would just need to warm it enough
while you squeeze it.
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that , and , then the impulse applied by the stick to the park is approximately:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Distance for which the bike is ridden = 30 km
Speed at which the bike is driven = 0.75 km/minute
Let us assume the number of minutes taken to travel the distance of 30 km = x
Now we already know the formula of speed can be written as
Speed = Distance traveled/ Time taken
0.75 = 30/x
0.75x = 30
x = 30/0.75
= 40 minutes
So the time taken for riding a distance of 30 km will be 40 minutes. I hope this procedure is simple enough for you to understand.
1,000 grams = 1 kilogram
20 grams = 0.02 kilogram
Kinetic energy = (1/2) (mass) x (speed)²
(1/2) (0.02) x (15)² =
(0.01) x (225) = 2.25 joules