Hello,
P(x)=x^4-6x²+2=(x-a)(x-b)(x-c)(x-d)
=x^4-(a+b+c+d)x^3+(ab+ac+ad+bc+bd+cd)x^2-(abc+abd+acd+bcd)x+abcd
==>
ab+ac+ad+bc+bd+cd=-6
abc+abd+acd+bcd=0
abcd=2
a+b+c+d=0 ==>(a+b+c+d)²=0=a²+b²+c²+d²+2(ab+ac+ac+bc+bd+cd)
==>a²+b²+c²+d²=0-2*(-6)=12
if a is a root P(a)=0==>a^4-6a²+2=0
if b is a root P(b)=0==>b^4-6b²+2=0
if c is a root P(a)=0==>c^4-6c²+2=0
if d is a root P(a)=0==>d^4-6d²+2=0
==>a^4+b^4+c^4+d^4-6(a²+b²+c²+d²)+4*2=0
==>a^4+b^4+c^4+d^4=-8+6*12=64
Answer:
Please send me the polynomial of f(x) and g(x)..or you have opposite line with equation while you plot a graph
9514 1404 393
Answer:
∠1 = 67°; ∠2 = 113°
Step-by-step explanation:
<u>Given</u>:
∠1 = 2x-3
∠2 = 3x +8
∠1 +∠2 = 180
<u>Find</u>:
∠1, ∠2
<u>Solution</u>:
Substituting the first two relations into the third, we have ...
(2x -3) +(3x +8) = 180
5x +5 = 180 . . . eliminate parentheses
x + 1 = 36 . . . . . divide by 5
x = 35
Then the angles are ...
∠1 = 2x-3 = 2(35) -3
∠1 = 67°
∠2 = 3x +8 = 3(35) +8
∠2 = 113°
-248.66 + x = 544.12
544.12 - (-248.66) = 792.78
-248.66 + 792.78 = 544.12