Answer:
Explanation:
The horizontal distance covered by the ball in the falling is only determined by its horizontal motion - in fact, it is given by
where
is the horizontal velocity
t is the time of flight
The time of flight, instead, is only determined by the vertical motion of the ball: however, in this problem the vertical velocity is not changed (it is zero in both cases), so the time of flight remains the same.
In the first situation, the horizontal distance covered is
in the second case, the horizontal velocity is increased to
And so the new distance travelled will be
So, the distance increases linearly with the horizontal velocity.
Answer:
t = 3.48 s
Explanation:
The time for the maximum height can be calculated by taking the derivative of height function with respect to time and making it equal to zero:
where,
v₀ = initial speed = 110 ft/s
Therefore,
<u>t = 3.48 s</u>
Answer:
Car A would have a better average speed
Explanation:
added weight to a object that is self propelled will be slower than a identical object with no added weight
Hello! :)
The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.
Hope I helped and didn’t answer too late!
Good luck and stay COOL!
~ Destiny ^_^