They are compressed so that a larger amount of gas can be stored in a smaller container. A greater mass confined to a smaller volume makes transporting and storing of gases easier. Increasing temperature increases pressure, and the cylinders might explode. Before compressed oxygen can be breathed, it must be decompressed.
Answer:
4.North to south
Explanation:
In magnetic fields, the north pole is considered negative while the south pole is considered positive. Hence the balloon will be attracted from the north towards the south pole since it is negatively charged.
Answer:
1) The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
2) The amount (in grams) of excess reactant H₂ = 4.39 g.
Explanation:
- Firstly, we should write the balanced equation of the reaction:
<em>N₂ + 3H₂ → 2NH₃.</em>
<em>1) To determine the limiting reactant of the reaction:</em>
- From the stichiometry of the balanced equation, 1.0 mole of N₂ reacts with 3.0 moles of H₂ to produce 2.0 moles of NH₃.
- This means that <em>N₂ reacts with H₂ with a ratio of (1:3).</em>
- We need to calculate the no. of moles (n) of N₂ (5.23 g) and H₂ (5.52 g) using the relation:<em> n = mass / molar mass.</em>
The no. of moles of N₂ in (5.23 g) = mass / molar mass = (5.23 g) / (28.00 g/mol) = 0.1868 mol.
The no. of moles of H₂ (5.52 g) = mass / molar mass = (5.52 g) / (2.015 g/mol) = 2.74 mol.
- From the stichiometry, N₂ reacts with H₂ with a ratio of (1:3).
The ratio of the reactants of N₂ (5.23 g, 0.1868 mol) to H₂ (5.52 g, 2.74 mol) is (1:14.67).
∴ The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
<em>2) To determine the amount (in grams) of excess reactant of the reaction:</em>
- As showed in the part 1, The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
- Also, 0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
- The no. of moles are in excess of H₂ = 2.74 mol - 0.5604 mol (reacted with N₂) = 2.1796 mol.
- ∴ The amount (in grams) of excess reactant H₂ = n (excess moles) x molar mass = (2.1796 mol)((2.015 g/mol) = 4.39 g.
9.there are thermal cups that we use
Answer is: the hydronium ion concentratio is 1.71×10⁻⁷ mol/dm³ and pH<6.76.
The Kw (the ionization constant of water) at 40°C is 2.94×10⁻¹⁴ mol²/dm⁶ or 2.94×10⁻¹⁴ M².
Kw = [H₃O⁺] · [OH⁻].
[H₃O⁺] = [OH⁻] = x.
Kw = x².
x = √Kw.
x = √2.94×10⁻¹⁴ M².
x = [H₃O⁺] = 1.71×10⁻⁷ M; concentration of hydronium ion.
pH = -log[H₃O⁺].
pH = -log(1.71×10⁻⁷ M).
pH = 6.76.
pH (potential of hydrogen) is a numeric scale used to specify the acidity or basicity an aqueous solution.