An incandescent bulb becomes hotter than a fluorescent bulb when turned on because in a regular incandescent bulb, there is tungsten wire where electricity is converts into heat. A regular incandescent light bulb requires 4 times more energy than a fluorescent bulb in order to produce the same amount of light. The conversion is such that for a 75-watt bulb, temperature get raised to approximately 2000 K. For such a high temperature, the radiating energy from the wire have some visible light. In such bulbs, 90% of the electricity get consumed in producing heat and only 10% produces light thus, they are not much efficient source of light.
On the other hand, fluorescent bulbs produce light with less amount of heat. In them, 40% of electricity is consumed in producing light and 60% in heat which is very less as compared to heat produced by a incandescent bulb. This is because when it get turned on, mercury atoms inside the bulb collides with electrons and produce UV light which is then converted into visible light using thin layer of phosphor power present inside the bulb. This produces low amount of heat thus, the bulb stays cooler, the bigger size of bulb also helps in dispersing heat.
Therefore, a fluorescent light bulb is not as hot as an incandescent light bulb.
Answer:
HF
H₂S
H₂CO₃
NH₄⁺
Explanation:
<em>Which acid in each of the following pairs has the stronger conjugate base?</em>
According to Bronsted-Lowry acid-base theory, <em>the weaker an acid, the stronger its conjugate acid</em>. Especially for weak acids, pKa gives information about the strength of such acid. <em>The higher the pKa, the weaker the acid.</em>
<em />
- Of the acids HCl or HF, the one with the stronger conjugate base is HF because it is a weak acid.
- Of the acids H₂S or HNO₂, the one with the stronger conjugate base is H₂S because it is a weaker acid. pKa (H₂S) = 7.04 > pKa (HNO₂) = 3.39
- Of the acids H₂CO₃ or HClO₄, the one with the stronger conjugate base is H₂CO₃ because it is a weak acid.
- Of the acids HF or NH₄⁺, the one with the stronger conjugate base is NH₄⁺ because it is a weaker acid. pKa (HF) = 3.17 < pKa (NH₄⁺) = 9.25
Answer:
The final pressure of the gas is 0.915atm
Explanation:
We have to apply the Charles Gay Lussac Law, where the pressure changes directly proportional to absolute T°
- No change in volume
- The same moles in both situations
P1 / T1 = P2 / T2
0.991 atm / 342K = P2 / 316k
(0.991 atm / 342K) . 316K = P2
0.915 atm = P2
We cannot see it its so small
Also yes it matches your hypothesis
<span>D. The screw changes the direction of a force - it converts linear force into rotational force. It also reduces the force required - the closer the threads, the smaller the input force required to get the same output force.</span>