Answer:
C. Different heights of holes in the container
Explanation:
The independent variable is the variable that changes. So the independent variable is C because the heights of the holes change.
Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Answer: Its average atomic mass is 114.9 amu
Explanation:
Mass of isotope 1 = 113 amu
% abundance of isotope 1 = 5% =
Mass of isotope 2 = 115 amu
% abundance of isotope 2 = 95% =
Formula used for average atomic mass of an element :
Thus its average atomic mass is 114.9 amu
Answer:
They are all alkali earth metals.
Explanation:
Their valence shell each has 2 electrons. Also, they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure. They form alkaline solutions, hydroxides, when reacting with water and their oxides are found in the earth’s crust.
Answer:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles