Let "c" and "q" represent the numbers of bottles of Classic and Quantum that should be produced each day to maximize profit. The problem conditions give rise to 3 inequalities:
.. 0.500c +0.550q ≤ 100 . . . . . . . liters of water
.. 0.600c +0.200q ≤ 100 . . . . . . . kg of sugar
.. 0.1c +0.2q ≤ 32 . . . . . . . . . . . . . grams of caramel
These can be plotted on a graph to find the feasible region where c and q satisfy all constraints. You find that the caramel constraint does not come into play. The graph below has c plotted on the horizontal axis and q plotted on the vertical axis.
Optimum production occurs near c = 152.17 and q = 43.48. Examination of profit figures for solutions near those values reveals the best result for (c, q) = (153, 41). Those levels of production give a profit of 6899p per day.
To maximize profit, Cartesian Cola should produce each day
.. 153 bottles of Classic
.. 41 bottles of Quantum per day.
Profit will be 6899p per day.
_____
The problem statement gives no clue as to the currency equivalent of 100p.
Usando las relaciones entre velocidad, distancia y tiempo, se encuentra que ella condujo a una velocidad media de 90,5 km/h.
--------------------------
La <u>velocidad </u><u>es la distancia dividida por el tiempo</u>, por lo que:
- Total de 135,75 km, o sea,
- Llego en 1,5 horas, o sea,
La velocidad es:
División de decimales, o sea, seguimos multiplicando los números por 10 hasta que ninguno sea decimal:
Ella condujo a una velocidad media de 90,5 km/h.
Un problema similar es dado en brainly.com/question/24558377
Answer:
The hole is at (5,7)
Step-by-step explanation:
x^2 − 3x − 10
-------------------
x−5
Factor the numerator
(x-5)(x+2)
-------------------
x−5
There is a hole at x=5 since it will cancel in the numerator and the denominator
f(x) = x+2 and letting x = 5
f(5) = 5+2
The hole is at (5,7)
<span>probability that the card is a red 8
=
2 out of 52 or 1 out of 26
hope it helps</span>