Answer:
1/63
Step-by-step explanation:
Here is the complete question
In an experiment, the probability that event A occurs is 1
/7 and the probability that event B occurs is 1
/9
.
If A and B are independent events, what is the probability that A and B both occur?
Simplify any fractions.
Solution
the probability of independent events A and B occurring is P(A u B) = P(A)×P(B) where P(A) = probability that event A occurs = 1
/7 and P(B) = probability that event B occurs = 1
/9
.
So, P(A u B) = P(A)×P(B) = 1/7 × 1/9 = 1/63
I was never sure of what the "additive inverse" is.
So, just now, just for you, I went and looked it up.
The additive inverse of any number ' A ' is the number
that you need to ADD to A to get zero. That's all !
So now, let's check out the choices:
a), 6, -(-6)
That second number, -(-6), is the same as +6 .
So the two numbers are the same.
Do you get zero when you add them up ? No.
b). -7, 7
What do you get when you add -7 and 7 ?
You get zero.
So these ARE additive inverses.
c). -7, -7
What do you get when you add -7 to -7 ?
You get -14 . That's not zero, so these
are NOT additive inverses.
d). 7, 7
What do you get when you add 7 to 7 ?
You get 14. That's NOT zero, so these
are NOT additive inverses.
e). 6, -6
What do you get when you add 6 to -6 ?
You get zero.
So these ARE additive inverses.
What do we end up with from the list of choices:
a)., c)., and d). are NOT additive inverses.
b). and e). ARE additive inverses.
Answer:
y + 1 = -14(x - 2)^2y = -14(x - 2)^2 - 1
Step-by-step explanation:
Jim have a dollar in 20 cent in his pocket and takes out a dollar how much he have left in his pocket answer- 20 cent