Answer:
a straight neck flask to allow air to get in
Explanation:
I took the test eWe
Answer:
A breakdown of the breaking buffer was first listed with its respective component and their corresponding value; then a table was made for the stock concentrations in which the volume that is being added was determined by using the formula . It was the addition of these volumes altogether that make up the 0.25 L (i.e 250 mL) with water
Explanation:
Given data includes:
Tris= 10mM
pH = 8.0
NaCl = 150 mM
Imidazole = 300 mM
In order to make 0.25 L solution buffer ; i.e (250 mL); we have the following component.
Stock Concentration Volume to be Final Concentration
added
1 M Tris 2.5 mL 10 mM
5 M NaCl 7.5 mL 150 mM
1 M Imidazole 75 mL 300 mM
. is the formula that is used to determine the corresponding volume that is added for each stock concentration
The stock concentration of Tris ( 1 M ) is as follows:
.
The stock concentration of NaCl (5 M ) is as follows:
.
The stock concentration of Imidazole (1 M ) is as follows:
.
Hence, it is the addition of all the volumes altogether that make up 0.25L (i.e 250 mL) with water.
Answer: The new pressure of the gas in Pa is 388462
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
where,
= initial pressure of gas at STP =
= final pressure of gas = ?
= initial volume of gas = 700.0 ml
= final volume of gas = 200.0 ml
= initial temperature of gas = 273 K
= final temperature of gas =
Now put all the given values in the above equation, we get:
The new pressure of the gas in Pa is 388462
Answer:
(slow)xy2+z→xy2z (fast) c step1:step2:xy2+z2→xy2z2
Explanation:
Step1: xy2+z2→xy2z2 (slow)
Step2: xy2z2→xy2z+z (fast)
2XY 2 + Z 2 → 2XY 2 Z
Rate= k[xy2][z2]
When the two elementary steps are summed up, the result is equivalent to the stoichiometric equation. Hence, this mechanism is acceptable. The order of both elementary steps is 2, which is ‘≤3’; this also makes this mechanism acceptable. Furthermore, the rate equation aligns with the experimentally determined rate equation, and this also makes this mechanism acceptable. Therefore, since all the three rules have been observed, this mechanism is possible.
Whenever any substance goes under chemical change so any of the reaction will happen either both or multiple compounds will combine to produce combination reaction either one compound will decompose itself into 2 or more compounds or elements and last one is replacement reaction the either reaction is not even going to combination nor decomposition, So when a reaction like that happens it must replacement reaction.
Now the question is what's the condition required for it, so basically a chemical reaction when takes place it depends upon several factor on the basis of which we conclude products. The factors are Temperature,catalyst,reagents, either what is the mechanism of reaction, stability of reactants and stability of products and alot more.
During reaction sometimes gas forms and sometimes not yea and well that also depends on the chemical reactivity and stability of product sometimes product found itself most stable releasing the gas evolving so it's been done itself and sometimes we add catalyst and adjust the reaction to extract that gas and get desirable product manually.
I wrote all i know if sorry if this is not what you're looking for :(