Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
Answer:
0.312 moles of H2O
Explanation:
no. of moles of ch4= mass ÷ molar mass
=2.5 ÷ 16.04
=0.156 moles of ch4
According to balanced chemical equation
CH4 : H2O
1 mole : 2 moles
0.156 moles : x moles
by cross multiplication
x= (0.156x2) ÷ 1
= 0.312 moles of H2O
Answer:
An alloy is a combination of metals or metals combined with one or more other elements. For example, combining the metallic elements gold and copper produces red gold, gold and silver becomes white gold, and silver combined with copper produces sterling silver. Elemental iron, combined with non-
Explanation:
that's what an alloy is all the rocks including gold silver combined with copper and sterling silver
Answer:
increase in temperature of the intrinsic semiconductor
Explanation:
- If the p-side has a higher doping concentration, it implies that number of holes (positive ion) increased which is greater than number of electron (negative ion) in the n-side
- in order to balance the intrinsic concentration, that is to balance the number of holes and electrons which depends on temperature.
- an increase in the temperature of the intrinsic semiconductor (p-side), increases the number of electron but number of holes remains constant.
A balance in the intrinsic concentration helps in tuning to the same radio channel.