Answer:
163.2g
Explanation:
First let us generate a balanced equation for the reaction. This is shown below:
4Al + 3O2 —> 2Al2O3
From the question given, were were told that 3.2moles of aluminium was exposed to 2.7moles of oxygen. Judging by this, oxygen is excess.
From the equation,
4moles of Al produced 2moles of Al2O3.
Therefore, 3.2moles of Al will produce = (3.2x2)/4 = 1.6mol of Al2O3.
Now, let us covert 1.6mol of Al2O3 to obtain the theoretical yield. This is illustrated below:
Mole of Al2O3 = 1.6mole
Molar Mass of Al2O3 = (27x2) + (16x3) = 54 + 48 =102g/mol
Mass of Al2O3 =?
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Al2O3 = 1.6 x 102 = 163.2g
Therefore the theoretical of Al2O3 is 163.2g
K + S = K2S
Potassium reacts with sulfur to produce potassium sulfide
Answer:
Nonmetals and nonmetals tend to form covalent bonds.
or
P and S
Explanation:
Answer:
Reagents: 1) 2) ,
Mechanism: Hydroboration
Explanation:
In this case, we have a <u>hydration of alkene</u>s reaction. But, in this example, we have an <u>anti-Markovnikov reaction</u>. In other words, the "OH" is added in the least substituted carbon. Therefore we have to choose an anti-Markovnikov reaction: <u>"hydroboration"</u>.
The <u>first step</u> of this reaction is the addition of borane () to the double bond. Then in the <u>second step</u>, we have the deprotonation of the hydrogen peroxide, to obtain the peroxide anion. In the <u>third step</u>, the peroxide anion attacks the molecule produced in the first step to produce a complex compound in which we have a bond "". In <u>step number 4</u> we have the migration of the C-B bond to oxygen. Then in <u>step number 5</u>, we have the attack of on the to produce an alkoxide. Finally, the water molecule produce in step 2 will <u>protonate</u> the molecule to produce the alcohol.
See figure 1
I hope it helps!
Answer is: the partial pressure of the helium gas is 0.158 atm.
p(mixture) = 0.48 atm; total pressure.
m(H₂) = 1.0 g; mass of hydrogen gas.
n(H₂) = m(H₂) ÷ M(H₂).
n(H₂) = 1.0 g ÷ 2 g/mol.
n(H₂) = 0.5 mol; amount of hydrogen.
m(He) = 1.0 g; mass of helium.
n(He) = 1 g ÷ 4 g/mol.
n(He) = 0.25 mol; amount of helium.
χ(H₂) = 0.5 mol ÷ 0.75 mol.
χ(H₂) = 0.67; mole fraction of hydrogen.
χ(He) = 0.25 mol ÷ 0.75 mol.
χ(He) = 0.33; mole fraction of helium.
p(He) = 0.33 · 0.48 atm.
p(He) = 0.158 atm; the partial pressure of the helium gas.