Answer:
The Art of Protein Synthesis
In eukaryotic cells, transcription takes place in the nucleus. During transcription, DNA is used as a template to make a molecule of messenger RNA (mRNA). The molecule of mRNA then leaves the nucleus and goes to a ribosome in the cytoplasm, where translation occurs.
Explanation:
Plz mark brainliest thanks
The balanced equation for the above reaction is as follows;
2HCl + K₂SO₃ ---> 2KCl + H₂O + SO₂
stoichiometry of HCl to SO₂ is 2:1
number of moles of HCl reacted - 15.0 g / 36.5 g/mol = 0.411 mol
according to molar ratio
number of SO₂ moles formed - 0.411 mol /2 = 0.206 mol
since we know the number of moles we can find volume using ideal gas law equation
PV = nRT
where
P - pressure - 1.35 atm x 101 325 Pa/atm = 136 789 Pa
V - volume
n - number of moles - 0.206 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 325 K
substituting values in the equation
136 789 Pa x V = 0.206 mol x 8.314 Jmol⁻¹K⁻¹ x 325 K
V = 4.07 L
volume of SO₂ formed is 4.07 L
The freezing point depression is a colligative property which means that it is proportional to the number of particles dissolved.
The number of particles dissolved depends on the dissociation constant of the solutes, when theyt are ionic substances.
If you have equal concentrations of two solutions on of which is of a ionic compound and the other not, then the ionic soluton will contain more particles (ions) and so its freezing point will decrease more (will be lower at end).
In this way you can compare the freezing points of solutions of KCl, Ch3OH, Ba(OH)2, and CH3COOH, which have the same concentration.
As I explained the solution that produces more ions will exhibit the greates depression of the freezing point, leading to the lowest freezing point.
In this case, Ba(OH)2 will produce 3 iones, while KCl will produce 2, CH3OH will not dissociate into ions, and CH3COOH will have a low dissociation constant.
Answer: Then, you can predict that Ba(OH)2 solution has the lowest freezing point.
53.6 hectometers is not equal to 0.536 kilometer
Answer: 0.00867 moldm-3
Explanation:
Since the reaction is 1st order,
Rate of reaction=∆[A]÷t
0.646-0.0146/72.8= 0.00867
Remember that in a first order reaction, the rate of reaction depends on change in the concentration of only one of the reaction species, A in the problem above.