Answer:
Atom
Explanation:
The smallest unit which maintains an element's properties is an atom.
Answer: The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
Explanation:
According to avogadro's law, equal volumes of all gases at same temperature and pressure have equal number of moles.
According to avogadro's law, 1 mole of every substance contains avogadro's number of particles.
Thus as oxygen and nitrogen are at same temperature and pressure and are in equal volume flasks , they have same number of moles and thus have same number of molecules.
The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
The end product will depend upon
a) the amount of the reagent taken
b) the final treatment of the reaction
If we have just taken methylmagnesium iodide and p-hydroxyacetophenone, then we will get methane and hydroxyl group substituted with MgI in place of hydrogen
Figure 1
However if we have taken excess of methylmagnesium iodide which is Grignard's reagent followed by hydrolysis we will get different product
Figure 2
I believe is different in pressure
Answer: Option (B) is the correct answer.
Explanation:
- An ionic bond is formed by the sharing of electrons between two chemically combining atoms.
In an ionic bond, there occurs attraction between oppositely charged ions due to which there occurs strong forces of attraction between them. Therefore, ionic bonds are the strongest bonds.
- A polar covalent bond is formed due to unequal sharing of electrons between the combining atoms.
For example, is a polar covalent compound. Partial opposite charges tend to develop on the atoms of a polar covalent compound.
- A non-polar covalent bond is formed due to equal sharing of electrons between the combining atoms.
For example, is a non-polar covalent molecule. No partial charges will be there on the atoms of a non-polar covalent molecule.
- A hydrogen bond is defined as the bond formed between a hydrogen atom and an electronegative atom.
For example, in HCl compound there occurs hydrogen bonding.
In this type of bond, dipole-dipole attractive interactions tend to take place. And, strength of hydrogen bonds is very weak.
Thus, we can conclude that given bond types are arranged in order of increasing strength as follows.
Hydrogen bonds < non-polar covalent bonds < polar covalent bonds < ionic bonds