Answer:
Mass = 179.9 g
Explanation:
Given data:
Volume of solution = 450 mL
Molarity of solution = 2.00 M
Mass in gram required = ?
Solution:
Volume of solution = 450 mL× 1 L / 1000 mL = 0.45 L
Molarity = number of moles of solute/ Volume of solution in L
2.00 M = number of moles of solute / 0.45 L
Number of moles of solute = 2.00 M × 0.45 L
M = mol/L
number of moles of solute = 0.9 mol
Mass of CaBr₂ in gram:
Mass = number of moles × molar mass
Mass = 0.9 mol ×199.89 g/mol
Mass = 179.9 g
Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as , and in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.
Answer:
No, they did not live at the same time.
Explanation:
Hope this helps!
<u>Given information:</u>
A solution with a high H+ ion concentration
<u>To determine:</u>
The nature of pH of such a solution
<u>Explanation:</u>
pH is a measure of the H+ ion concentration in a given solution. Lower the pH higher will be the H+ concentration and the solution is termed acidic. In contrast, if the pH is higher the H+ concentration will be lower and the solution is basic.
Mathematically,
pH = -log[H+]
[H+] =
pH = 2; [H+] = 10⁻²M
pH = 7; [H+] = 10⁻⁷M
pH = 13; [H+] = 10⁻¹³M
pH = 14; [H+] = 10⁻¹⁴M
Ans: (a)
Thus, the highest concentration of H+ ions is for a solution of pH = 2