Explanation:
Mole ratio of Oxygen to Hydrogen gas = 1 : 2.
If we use 3.0 moles of oxygen gas, we would need 3.0 * 2 = 6.0 mol of hydrogen gas.
However we only have 4.2 mol of hydrogen. Therefore hydrogen is limiting and oxygen is in excess. (B)
Sorry I’m just here for more questions
Given:
No of atoms present= 8.022 x 10^23 atoms
Now we know that 1 mole= 6.022 x 10^23 atoms
Hence number of moles present in 8.022 x 10^23 atoms is calculated as below.
Number of moles
= 8.022 x 10^23/6.022x 10^23
=1.3 moles.
Hence we have 1.3 moles present.
Answer:
Al(OH)3 ? i hope this is what you mean.
Alka-seltzer in an antacid that contains a mixture of sodium bicarbonate and citric acid. When the tablet is dissolved in water, the reactants which are in solid form in tablet become aqueous and react with each other.
During this reaction, Carbon Dioxide gas is evolved which causes the reaction mixture to fizz. The equation is given below.
Rate of the above reaction is affected by the Temperature.
As the temperature increases , the rate of the reaction increases. This happens because at higher temperature, the collisions between reacting species are more which result in formation of product in less time. This increases the rate of reaction.
We have been given equal volumes of water for each beaker. But the temperature of beaker c is 80°C which is the highest temperature. That means the reaction in beaker c is fastest.
Whereas beaker a is at lowest temperature (30°C) , therefore the reaction in beaker a would be slowest .
Therefore the answer that correctly orders the reaction rates from fastest to slowest reaction is beaker c > beaker b > beaker a