For this case we first write the equation of which we will use:
I (db) = 10log (l / l)
We substitute the value of l.
We have then:
l = 10 ^ 8lo
Substituting in the given equation:
I (db) = 10log ((10 ^ 8lo) / lo)
Rewriting:
I (db) = 10 * log (10 ^ 8)
I (db) = 80
Answer:
I (db) = 80
option 4
Answer:
sum of interior angle of heptagon is 900°.
140°+148°+136°+150°+142°+90°+x=900°
806+x=900°
x=900°-806°
x=94°
1) Surface Area = 2(lw + lh + wh)
2(4*5+4*9+5*9) =202in^2
Surface Area=202in^2
Lateral Area= Perimeter of base * height
5+5=10 <--width+width
4+4=8 <---length + length
10+8=18 <--total perimeter
18 * 9=162in^2 <--multiplied the height +perimeter of base
Lateral Area=162in^2
2) Same concept as the previous one
Surface Area = 2(lw + lh + wh)
2(4*2+4*5+5*2) =76in^2
Surface Area= 76in^2
Lateral Area
Lateral Area= Perimeter of base * height
4+4=8
2+2=4
8+4=12
12 x 5=60
Lateral Area= 60in^2
Answer:
(x, y ) → (x + 11, y - 11 )
Step-by-step explanation:
Consider the point U and its image U'
U (- 9, 1 ) → U' (2, - 10 )
This represents a shift of 2 - (- 9) = 2 + 9 = + 11 → in the x- direction and
- 10 - 1 = - 11 ↓ in the y- direction
This can be shown in the translation rule
(x, y ) → (x + 11, y - 11 )