Answer:
3/15= 1/5 That's the answer
Answer:
Step-by-step explanation:
Since; the density function diagrams were not included in the question; we will be unable to determine the best which depicts this problem.
However;
Let use X to represent the time required for the delivery.
Then X~N(3.8 ,0.8)
i.e
E(x) = 3.8
s.d(x) = 0.8
NOW; P(x>4) = P(X-3.8/0.8 > 4-3.8/0.8)
= P(Z > 0.25)
= 1-P(Z < 0.25)
=1 - Φ (0.25)
= 1 - 0.5987 ( from Normal table Φ (0.25) = 0.5987 )
= 0.4013
Thus; the probability a single delivery would take more than 4 hours is 0.4013
What is the z value corresponding to the interval boundary?
The z value is calculated as:
z = 0.25
Answer:
Convert the following into rupees and paise.
a. 300paise = <u>3</u> Rupees <u>0</u> paise
b. 705paise = <u>7</u> Rupees <u>5</u> paise
c. 3260paise = <u>3</u><u>2</u> Rupees <u>6</u><u>0</u> paise
d. 5275paise = <u>5</u><u>2</u> Rupees <u>7</u><u>5</u> paise
e. 8265paise = <u>8</u><u>2</u> Rupees <u>6</u><u>5</u> paise
f. 9305paise = <u>9</u><u>3</u> Rupees <u>5</u> paise
g. 6010paise = <u>6</u><u>0</u> Rupees <u>1</u><u>0</u> paise
h. 7995paise = <u>7</u><u>9</u> Rupees <u>9</u><u>5</u> paise
i. 2335paise = <u>2</u><u>3</u> Rupees <u>3</u><u>5</u> paise
j. 1175 paise = <u>1</u><u>1</u> Rupees <u>7</u><u>5</u> paise
k. 425 paise = <u>4</u> Rupees <u>2</u><u>5</u> paise
l. 9090paise = <u>9</u><u>0</u> Rupees <u>9</u><u>0</u> paise
Hope it's helpful!
Answer:
Step-by-step explanation:
Step 1: Put this into an equation
Step 2: Solve for x
Therefore you need to subtract from to get