The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
The mass of the hoop is the only force which is computed by:F net = 2.8kg*9.81m/s^2 = 27.468 N
the slow masses that must be quicker are the pulley, ring, and the rolling sphere.
The mass correspondent of M the pulley is computed by torque τ = F*R = I*α = I*a/R F = M*a = I*a/R^2 --> M = I/R^2 = 21/2*m*R^2/R^2 = 1/2*m
The mass equal of the rolling sphere is computed by: the sphere revolves around the contact point with the table. So using the proposition of parallel axes, the moment of inertia of the sphere is I = 2/5*mR^2 for spin about the midpoint of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. I = 7/5*mR^2 M = 7/5*m
the acceleration is then a = F/m = 27.468/(2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Answer:
True
Explanation:
Side affects can range from
Problems with periods to Loss of breasts
Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.
Answer:
Y component = 32.37
Explanation:
Given:
Angle of projection of the rocket is,
Initial velocity of the rocket is,
A vector at an angle with the horizontal can be resolved into mutually perpendicular components; one along the horizontal direction and the other along the vertical direction.
If a vector 'A' makes angle with the horizontal, then the horizontal and vertical components are given as:
Here, as the velocity is a vector quantity and makes an angle of 33.6 with the horizontal, its Y component is given as:
Plug in the given values and solve for . This gives,
Therefore, the Y component of initial velocity is 32.37.