Answer:
The answer is ""
Explanation:
Using the law of conservation for energy. Equating the kinetic energy to the potential energy.
Calculating the closest distance:
We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.
The options are;
a. V2 equals 2V1.
b. V2 equals (V1)/2.
c. V2 equals V1.
d. V2 equals (V1)/4.
e. V2 equals 4V1.
Answer:
Option A: V2 equals 2V1
Explanation:
Since the flow is steady, then we can say;
mass flow rate at input = mass flow rate at output.
Formula for mass flow rate is;
m' = ρVA
Thus;
At input;
m'1 = ρ1•V1•A1
At output;
m'2 = ρ2•V2•A2
So, m'1 = m'2
Now, we are told that the density of the fluid decreases to half its initial value.
Thus; ρ2 = (ρ1)/2
Since m'1 = m'2, then;
ρ1•V1•A1 = (ρ1)/2•V2•A2
Now, the pipe is uniform and thus the cross section doesn't change. Thus;
A1 = A2
We now have;
ρ1•V1•A1 = (ρ1)/2•V2•A1
A1 and ρ1 will cancel out to give;
V1 = (V2)/2
Thus, V2 = 2V1
Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1
(b) The velocity of the car before the driver begins braking is
The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is
We can use the following equation of motion to calculate how far the car has travel since braking to stop
Also the distance from start to where the driver starts braking is
So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m