Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles
Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles
The concentration of HCl is equal to 2.54mol/L.
<h3>Mole calculation</h3>
To solve this question, one must use the molarity calculation, which corresponds to the following expression:
Thus, to find the molarity of the sample, the following calculations must be performed:
So, 0.00254 moles were added per 10ml, so we can do:
So, the concentration of HCl is equal to 2.54mol/L.
Learn more about mole calculation in: brainly.com/question/2845237
Answer:
True
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Hope it helps
Answer: The correct formula is
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here magnesium is having an oxidation state of +2 called as cation and bromine is an anion with oxidation state of -1. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
The cations and anions being oppositely charged attract each other through strong coloumbic forces and form an ionic bond.