Answer:
T = 100.63 °C
Explanation:
To solve this question, we need to know what are we talking about here. In this case, we want to know the boiling point of a solution with Urea in water. This is a colligative property, so, the expression to use to calculate that is the following:
ΔT = m * K / MM * kg water (1)
Where:
ΔT: difference of temperatures (Tb of solution - Tb water)
m: mass of the urea
K: ebulloscopic constant of the water (0.52 ° C / m)
MM: molecular mass of urea
The boiling point of water is 100 °C, we have the mass of the urea, but not the molar mass. The urea has the formula CH₄N₂O, so the molar mass can be calculated using the atomic mass of the elements (I will use a rounded number for this):
MM = 12 + (4*1) + (2*14) + 16 = 60 g/mol
Now, we can calculate the ΔT and then, the boiling point of the solution:
ΔT = 12 * 0.52 / 60 * 0.165
ΔT = 6.24 / 9.9
ΔT = 0.63 °C
the value of ΔT is a difference between the boling point of water and the solution so:
ΔT = Ts - Tw
Ts = ΔT + Tw
Replacing we have:
Ts = 100 + 0.63
<h2>
Ts = 100.63 ° C</h2>
Answer:
Intensive properties do not depend on the quantity of matter. Examples include density, state of matter, and temperature. Extensive properties do depend on sample size. Examples include volume, mass, and size.
Explanation:
Brainly!!!
pls
Answer is: concentration of products increases (ammonia nad water).
Chemical reaction: heat + NH₄⁺ + OH⁻ ⇄ NH₃ + H₂<span>O.
</span>According to Le
Chatelier's Principle, the position of equilibrium moves to counteract the
change, because heat is increased, system consume that heat, so equilibrium is shifted to right, by decreasing concentration of reaactants and increasing concentration of product.