Answer:
1.
5
x
−
2
y
=
4
; (−1, 1)
2.
3
x
−
4
y
=
10
; (2, −1)
3.
−
3
x
+
y
=
−
6
; (4, 6)
4.
−
8
x
−
y
=
24
; (−2, −3)
5.
−
x
+
y
=
−
7
; (5, −2)
6.
9
x
−
3
y
=
6
; (0, −2)
7.
1
2
x
+
1
3
y
=
−
1
6
; (1, −2)
8.
3
4
x
−
1
2
y
=
−
1
; (2, 1)
9.
4
x
−
3
y
=
1
;
(
1
2
,
1
3
)
10.
−
10
x
+
2
y
=
−
9
5
;
(
1
5
,
1
10
)
11.
y
=
1
3
x
+
3
; (6, 3)
12.
y
=
−
4
x
+
1
; (−2, 9)
13.
y
=
2
3
x
−
3
; (0, −3)
14.
y
=
−
5
8
x
+
1
; (8, −5)
15.
y
=
−
1
2
x
+
3
4
;
(
−
1
2
,
1
)
16.
y
=
−
1
3
x
−
1
2
;
(
1
2
,
−
2
3
)
17.
y
=
2
; (−3, 2)
18.
y
=
4
; (4, −4)
19.
x
=
3
; (3, −3)
20.
x
=
0
; (1, 0)
Find the ordered pair solutions given the set of x-values.
21.
y
=
−
2
x
+
4
; {−2, 0, 2}
22.
y
=
1
2
x
−
3
; {−4, 0, 4}
23.
y
=
−
3
4
x
+
1
2
; {−2, 0, 2}
24.
y
=
−
3
x
+
1
; {−1/2, 0, 1/2}
25.
y
=
−
4
; {−3, 0, 3}
26.
y
=
1
2
x
+
3
4
; {−1/4, 0, 1/4}
27.
2
x
−
3
y
=
1
; {0, 1, 2}
28.
3
x
−
5
y
=
−
15
; {−5, 0, 5}
29.
–
x
+
y
=
3
; {−5, −1, 0}
30.
1
2
x
−
1
3
y
=
−
4
; {−4, −2, 0}
31.
3
5
x
+
1
10
y
=
2
; {−15, −10, −5}
32.
x
−
y
=
0
; {10, 20, 30}
Find the ordered pair solutions, given the set of y-values.
33.
y
=
1
2
x
−
1
; {−5, 0, 5}
34.
y
=
−
3
4
x
+
2
; {0, 2, 4}
35.
3
x
−
2
y
=
6
; {−3, −1, 0}
36.
−
x
+
3
y
=
4
; {−4, −2, 0}
37.
1
3
x
−
1
2
y
=
−
4
; {−1, 0, 1}
38.
3
5
x
+
1
10
y
=
2
; {−20, −10, −5}
Part B: Graphing Lines
Given the set of x-values {−2, −1, 0, 1, 2}, find the corresponding y-values and graph them.
39.
y
=
x
+
1
40.
y
=
−
x
+
1
41.
y
=
2
x
−
1
42.
y
=
−
3
x
+
2
43.
y
=
5
x
−
10
44.
5
x
+
y
=
15
45.
3
x
−
y
=
9
46.
6
x
−
3
y
=
9
47.
y
=
−
5
48.
y
=
3
Find at least five ordered pair solutions and graph.
49.
y
=
2
x
−
1
50.
y
=
−
5
x
+
3
51.
y
=
−
4
x
+
2
52.
y
=
10
x
−
20
53.
y
=
−
1
2
x
+
2
54.
y
=
1
3
x
−
1
55.
y
=
2
3
x
−
6
56.
y
=
−
2
3
x
+
2
57.
y
=
x
58.
y
=
−
x
59.
−
2
x
+
5
y
=
−
15
60.
x
+
5
y
=
5
61.
6
x
−
y
=
2
62.
4
x
+
y
=
12
63.
−
x
+
5
y
=
0
64.
x
+
2
y
=
0
65.
1
10
x
−
y
=
3
66.
3
2
x
+
5
y
=
30
Part C: Horizontal and Vertical Lines
Find at least five ordered pair solutions and graph them.
67.
y
=
4
68.
y
=
−
10
69.
x
=
4
70.
x
=
−
1
71.
y
=
0
72.
x
=
0
73.
y
=
3
4
74.
x
=
−
5
4
75. Graph the lines
y
=
−
4
and
x
=
2
on the same set of axes. Where do they intersect?
76. Graph the lines
y
=
5
and
x
=
−
5
on the same set of axes. Where do they intersect?
77. What is the equation that describes the x-axis?
78. What is the equation that describes the y-axis?
Part D: Mixed Practice
Graph by plotting points.
79.
y
=
−
3
5
x
+
6
80.
y
=
3
5
x
−
3
81.
y
=
−
3
82.
x
=
−
5
83.
3
x
−
2
y
=
6
84.
−
2
x
+
3
y
=
−
12
Step-by-step explanation:
Complete Question: Which of the following is an example of the difference of two squares?
A x² − 9
B x³ − 9
C (x + 9)²
D (x − 9)²
Answer:
A. .
Step-by-step explanation:
An easy way to spot an expression that is a difference of two squares is to note that the first term and the second term in the expression are both perfect squares. Both terms usually have the negative sign between them.
Thus, difference of two squares takes the following form: .
a² and b² are perfect squares. Expanding will give us .
Therefore, an example of the difference of two squares, from the given options, is .
can be factorised as .
Answer:
7.4 feets
Step-by-step explanation:
Distance from bottom of ladder to side of the house = d
θ = 62 ; height, h = 14
Using trigonometry :
Tan θ = opposite / Adjacent
Opposite = height ; adjacent = d
Tan 62° = 14 / d
1.8807264 * h = 14
d = 14 / 1.8807264
d = 7.44