Answer:
474 nm or 4.74 x 10^2 nm
Explanation:
c = λv
c (speed of light) = 2.998 x 10^8 m/s
λ = ?
v = 6.32 × 1014 Hz = 6.32 × 1014 1/s
2.998 x 10^8 m/s = (λ)(6.32 × 10^14 1/s)
λ = (2.998 x 10^8 m/s) / (6.32 × 10^14 1/s)
λ = 4.74 x 10^-7 m
λ = 4.74 x 10^-7 m x (1 x 10^9 nm/1 m) = 474 nm
Answer:
CaO + H20 => Ca(OH)2
Explanation:
quick lime ia a oxyde and when it reacts with water it gives hydroxide
The term sensitivity in Analytical Chemistry is "the slope of the calibration curve or a function of analyte concentration or amount".
<u>Answer:</u> Option B
<u>Explanation:</u>
In a sample, the little amounts of substances can be accurately evaluated by a method is termed as "Analytical sensitivity". This detect a target analyte like an antibody or antigen, process is considered as potential of a test to and generally demonstrated as the analyte's minimum detectable concentration.
The acceptable diagnostic sensitivity is not guaranteed by high analytical sensitivity. The percentage of individuals who have a given disarray who are identified by the method as positive for the disarray is known as "Diagnostic sensitivity".
Answer:
3.68 grams.
Explanation:
First we <u>convert 9.5 g of NaCl into moles of NaCl</u>, using its<em> molar mass</em>:
9.5 g ÷ 58.44 g/mol = 0.16 mol NaCl
In<em> 0.16 moles of NaCl there are 0.16 moles of sodium </em>as well.
We now <u>convert 0.16 moles of sodium into grams</u>, using <em>sodium's molar mass</em>:
0.16 mol * 23 g/mol = 3.68 g
Answer:
4.62
so 5
the ratio is 2 na chlorates for 3 O2 so multiply 7 by 2/3
Explanation: