Answer:
The area between z = 1.74 and z = 1.25 is of 0.065.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The area between two values of Z is given by the subtraction of the pvalue of the larger value by the smaller.
The area between z = 1.74 and z = 1.25.
This is the pvalue of z = 1.74 subtracted by the pvalue of z = 1.25.
z = 1.74 has a pvalue of 0.959
z = 1.25 has a pvalue of 0.894
0.959 - 0.894 = 0.065
The area between z = 1.74 and z = 1.25 is of 0.065.