A positive acceleration indicates that the object sped up. This means that if you compare the first speed to the second, the second speed should be higher.
A negative acceleration indicates that the object has slowed down. This means that if you compare the first speed to the second, the second speed should be lower.
If an acceleration is 0, it means that it neither slowed down nor sped up.
Now let us analyze your problem by listing down the speed and the time:
At noon: 4 mi/hr
12:30 : 6 mi/hr
2:30 : 2 mi/hr
From noon to 12:30, you will notice that there is an increase in speed. This means that Tommy had a positive acceleration. (Rules out D.)
From 12:30 to 2:30, there is a decrease in speed. This would indicate that Tommy had a negative acceleration. (Rules out C.)
No speed was the same, so acceleration was never 0. (Rules out A.)
From the assumptions above, we can now deduce that the answer is B.
Answer:
The law of conservation of mass states that matter can not be created or destroyed in a chemical reaction.
Explanation:
Answer:
11.35 g/cm³
Explanation:
If your rounding then 11.4. hope this helps :)
Answer: 600 kJ
-
Explanation:
C₃H₈ (g) + 5 O₂ (g) =============== 3 CO₂ (g) + 4 H₂O (l)
Δ⁰Hf kJ/mol -104 0 -393.5 -285.8
Δ⁰Hcomb C₃H₈ = 3(-393.5) + 4 (-285.80) - (-104) kJ/mol
Δ⁰Hcomb = 2219.70 kJ/mol
n= m /MW MW c₃H₈ = 44.1 g/mol
n= 12 g/44.1 g/mol = 0.27 mol
then for 12 g the heat released will be
0.27 mol x 2219.70 kJ/mol = 600 KJ
The amount of substance present in a certain object with a given half-life in terms of h can be expressed through the equation,
A(t) = (A(o))(0.5)^(t/h)
where A(t) is the amount of substance after t years and A(o) is the original amount. In this item we are given that A(t)/A(o) is equal to 0.89. Substituting the known values,
0.89 = (0.5)(t / 5730 years)
The value of t from the equation is 963.34 years.
<em>Answer: 963 years</em>