What are the exact values of the six trigonometric functions for -7pi/6 radians?
2 answers:
Sin -7π/6 = 0.5
cos -7π/6 = -√3/2
tan -7π/6 = -1/√3
sec -7π/6 = -2/√3
csc -7π/6 =2
cot -7π/6 = -√3
note: -7π/6 radians = -210° degree = -210 +360 = 150° = 5π/6
I have attached the unit circle for the given angle
For -7pi/6 is an angle in second quadrant, then sine and cosecant must be positive; and cosine, secant, tangent and cotangent must me negative. The reference angle is: 7pi/6-pi=7pi/6-6pi/6=(7pi-6pi)/6=pi/6 Then sin(-7pi/6)=sin(pi/6)→sin(-7pi/6)=1/2 cos(-7pi/6)=-cos(pi/6)→cos(-7pi/6)=-sqrt(3)/2 csc(-7pi/6)=1/sin(-7pi/6)=1/(1/2)=1(2/1)=2/1→csc(-7pi/6)=2 sec(-7pi/6)=1/cos(-7pi/6)=1/(-sqrt(3)/2)=-1(2/sqrt(3))=-2/sqrt(3)→ sec(-7pi/6)=-[2/sqrt(3)]*sqrt(3)/sqrt(3)=-2sqrt(3)/[sqrt(3)]^2→ sec(-7pi/6)=-2sqrt(3)/3 tan(-7pi/6)=sin(-7pi/6)/cos(-7pi/6)=(1/2)/(-sqrt(3)/2)=-(1/2)*(2/sqrt(3))→ tan(-7pi/6)=-2/[2sqrt(3)]=-1/sqrt(3)=-[1/sqrt(3)]*[sqrt(3)/sqrt(3)]→ tan(-7pi/6)=-sqrt(3)/[sqrt(3)]^2→tan(-7pi/6)=-sqrt(3)/3 cot(-7pi/6)=cos(-7pi/6)/sin(-7pi/6)=[-sqrt(3)/2]/(1/2)=-sqrt(3)/2*(2/1)→ cot(-7pi/6)=-2sqrt(3)/2→cot(-7pi/6)=-sqrt(3) Answers: sin(-7pi/6) = 1/2 cos(-7pi/6) = - sqrt(3)/2 tan(-7pi/6) = - sqrt(3)/3 csc(-7pi/6) = 2 sec(-7pi/6) = - 2*sqrt(3)/2 cot(-7pi/6) = - sqrt(3)
You might be interested in
Answer:
The answer is : √3/2
Step-by-step explanation:
Sin 60 = √3/2
The answer would be 10. Im not quite sure if thats the answer, im sorry if i get it wrong. Otherwise i hope this helped you! :)
Answer:
96,190 sq m
Step-by-step explanation:
96,187
7 is greater than 5 so we round up
8 + 1 is 9
Therefore 9 6 , 1 8 7 rounded to the nearest ten is 9 6 , 1 9 0
Hope this helped~
Your local smart crackhead
Answer:
Step-by-step explanation:
fog(x)=f(g(x))
so it comes
<u>so C is the correct answer</u>
i'm not sure how to solve the first one but the second is 150