False. It does repeat itself
Answer:
The change in momentum = -20000 kg m/s.
Explanation:
Mass m = 1000 kg
speed v₁ = 20 m/s
speed v₂ = 0 m/s
We know that,
The change in momentum
ΔP = m (Δv)
ΔP = m (v₂ - v₁)
= 1000 (0 - 20)
= 1000 (-20)
= -20000 kg m/s
Thus, the change in momentum = -20000 kg m/s.
Note: negative sign indicates that the velocity is reducing when it hits the barrier.
Answer:
A (2066,6 N)
Explanation:
Use the Work formula
62.000J = F . 30
62.000/30 = 2066,6 N
The amout of time it took to move the rock doesn´t matter at all.
It is called a distraction variable, We don´t need it to solve the problem it is there just to confuse.
The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 * m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 × C
mass of electron = 9.1 × kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 × * 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m *
= 1/2 * 9.1 × *
equation both the equations
1/2 * 9.1 × * = 1.6 ×
= 0.352 * m/s
= 35.2 *
= 5.93 * m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4