Answer:
According to Bohr, the amount of energy needed to move an electron from one zone to another is a fixed, finite amount. ... The electron with its extra packet of energy becomes excited, and promptly moves out of its lower energy level and takes up a position in a higher energy level. This situation is unstable, however.
Answer:
The book sitting on the desk
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position relative to the ground.
It is calculated as:
where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object with respect to the ground
From the formula, we see that the GPE of an object is directly proportional to the heigth h: so, the higher the location of the object, the larger the GPE.
In this problem, we are comparing a book sitting on a desk and the same book sitting on the floor. In the two situations, the mass of the book is the same; however, in the first case, the value of the height is h, while in the second case, the value of h is lower (because the book is located at a lower height, being on the floor).
Therefore, we can conclude that the first book must have a larger GPE, since it has a larger value of h.
Explanation:
Depression in Freezing point
= Kf × i × m
where m is molality , i is Van't Hoff factor, m = molality
Since molality and Kf remain the same
depression in freezing point is proportional to i
i= 2 for CuSO4 ( CuSO4----------> Cu+2 + SO4-2
i=1 for C2h6O
i= 3 for MgCl2 ( MgCl2--------> Mg+2+ 2Cl-)
So the freezing point depression is highest for MgCl2 and lowest for C2H6O
so freezing point of the solution = freezing point of pure solvent- freezing point depression
since MgCl2 has got highest freezing point depression it will have loweest freezing point and C2H6O will have highest freezing point
Answer:
c
Explanation:
it is corundum now please follow me
Answer:
D. The Ca[OH]2 solution may have been unsaturated
Explanation:
The solubility product constant Ksp of any given chemical compound is a term used to describe the equilibrium between a solid and the ions it contains solution. The value of the Ksp indicates the extent to which any compound can dissociate into ions in water. A higher the Ksp, implies more greater solubility of the compound in water.
If the Ksp is more than the value in literature, this false value must have arisen from the fact that the solution was unsaturated hence it appears to be more soluble than it should normally be when saturated.