A student compares the boiling point of substances having different intermolecular forces. <u>Boiling points of various substances</u> is the dependent variable that student most likely use.
<h3>Does the nature of intermolecular forces present in different substance affect their boiling points?</h3>
The boiling point of a substance is proportional to the strength of its intermolecular forces, the higher the boiling point, the stronger the intermolecular forces. We can compare the strengths of intermolecular forces by comparing the boiling points of different substances.
<h3>What properties are affected by intermolecular forces?</h3>
Intermolecular forces are measured by boiling points.
Intermolecular forces increase as bond polarization increases.
Ionic > hydrogen bonding > dipole dipole > dispersion is the order of the strength of intermolecular forces (and thus their impact on boiling points).
<h3>How can you determine strong and weak intermolecular forces?</h3>
Substances with strong intermolecular forces are very attracted to one another and are held together tightly. These substances require a great deal of energy to separate, whereas substances with weak intermolecular forces are held together very loosely and have weak interactions.
Learn more about intermolecular forces:
<u><em>brainly.com/question/13479228</em></u>
#SPJ4
Answer:
pH = 7.46
Explanation:
2H₂O ⇄ H₃O⁺ . OH⁻ Kw = [H₃O⁺] . [OH⁻]
[H₃O⁺] = [OH⁻]
√0.12×10⁻¹⁴ = [H₃O⁺] → 3.46×10⁻⁸ M
- log [H₃O⁺] = pH
- log 3.46×10⁻⁸ = pH → 7.46
I think C or OF2.I sorry if I was wrong.
<u>Answer:</u> The wavelength of the flame is 462 nm and color of cesium flame is blue.
<u>Explanation:</u>
To calculate the wavelength, we use Planck's equation, which is:
where,
E = Energy of 1 photon =
h = Planck's constant =
c = speed of light =
= wavelength = ?
Putting values in above equation, we get:
The range of wavelength of blue light lies in range of 500 nm - 435 nm
The calculated wavelength lies in the above range. So, the color of the cesium flame is 462 nm
Hence, the wavelength of the flame is 462 nm and color of cesium flame is blue.
<span>Omitting this substance will not affect the appearance of hand lotion because it is a white or off white color. Since it is an alcohol compound if it is left out of the formula it will keep your hands from drying out as fast. </span>Triethanolamine is considered as an amine alcohol. The compound itself does not affect much the appearance of the hand lotion prepared as it is colorless, But, the alcohol If avoided would result in a hand lotion which would not get dried out easily